

CHICKEN

History of an Open-Source
Programming Language Project

CHICKEN

A Scheme-to-C Compiler and Runtime system

Started 1998, Open source since 2000

Mature, efficient, portable
 (Linux, *BSD, Windows, Android, iOS, MacOS, Solaris,
 AIX, Haiku, ...)

Excellent FFI, good support for cross-development

5 mailing lists, ~500 subscribers, 7 core developers

IRC #chicken on freenode

Scheme

 Derived from Lisp, created ~1970

 Very simple, very elegant, very general

 Strong academic background

 Code == Data, syntactical abstractions

 Continuations, generalized control-flow, TCO

Cheney-on-the-MTA

 Originally invented by Henry Baker

 (Nearly) direct translation of CPS-converted Scheme to C

 Functions never return, stack used as a 1st generation
heap, simple Cheney-style copying collector as 2nd

 Once stack reaches a certain size, longjmp back to base

 Very efficient continuations, full TCO, safe-for-space

"Eggs"

 ~800 extensions + libraries

 Individual eggs can be downloaded and installed by a
 single command

 minimal library manager ("chicken-install")

 download from centralized mirrors, but published in a
 decentralized manner ("THE SYSTEM")

 Continuously tested ("Salmonella")
Instances run for several OSes

Initial state / How it began

 Found CoMTA paper, read "Compiling with Continuations",
got hooked, started coding

 covers all crucial concepts in a natural manner

 Sources released, after long hesitation

 no makefile, no VCS, no clue, but immense amount of work

 Considered to be "bug free" ... haha

First steps as OSS

 Strangely enough, people reported bugs and offered
suggestions

 Some people love playing with new tools

 And some people are just plain helpful, investing time and
effort

 NLP-guy relentlessly threw 50kLOC Scheme codebase at it

 Bugs, bugs, bugs

A user base builds up

 More bugs

 Moved to Savannah, using CVS, created mailing list

 Slowly gains traction, popularity, including Usenet
flamewars

 Furious development, trying to please everybody

 Core system grows and becomes more complex

 Egg-system starts to develop to move stuff out of core

Development model shows first signs of strain

 Too many disruptive changes, people start using this for real stuff

 Features accumulate, some necessary, some not

 Complexity piles up, no real processes exist

 Move between different VCSes (CVS, SVN, Darcs, SVN again,
 later git)

 Move between different build systems (make, autoconf,
 automake, CMake, make)

Development model shows first signs of strain

 Varying support for different platforms (Windows, Mac)

 Changing dependencies

 Users come and go, some immensely helpful ones, some
 totally crazy

 First face-to-face meetings

 Something has to be done

Politics

 Standards

 Scheme community is not easy

 People have different ideas + tastes

 Delegation, trust, patience, humbleness (hard)

Trying to get stability into the process

 Rigourous, automated testing

 "Change Requests"

 Patch-review with signoff by core-developer

 Proper release-cycle

 "Stability" branch

Target area

 System-programming / infrastructure

 Embedded systems

 Commercial systems

 Web programming

 Games

Lessons

 Make it easy to use with existing projects

 Avoid dependencies at all costs

 All your assumptions about performance are wrong

 Keep things simple

 Listen to your users, trust that others may know better

 … and still try to keep the system coherent

Mistakes

 Too much fear to fail

 Too many disruptive changes

 “Fixing” things without thinking of the implications

 Featuritis

 Trying to stay in control

Future

 CHICKEN 5 currently being prepared

 Better standards support (R7RS)

 Full support for static linking, easier deployment

 Internal structure cleaned up and modularized

 Cleaning up old cruft, fixing bugs long postponed

Thanks!

 felix.winkelmann@bevuta.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

